Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History

نویسندگان

  • James A Traherne
  • Roger Horton
  • Anne N Roberts
  • Marcos M Miretti
  • Matthew E Hurles
  • C. Andrew Stewart
  • Jennifer L Ashurst
  • Alexey M Atrazhev
  • Penny Coggill
  • Sophie Palmer
  • Jeff Almeida
  • Sarah Sims
  • Laurens G Wilming
  • Jane Rogers
  • Pieter J. de Jong
  • Mary Carrington
  • John F Elliott
  • Stephen Sawcer
  • John A Todd
  • John Trowsdale
  • Stephan Beck
چکیده

The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II-related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR-DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHC IIB Genetic Diversity and its Association With Humoral Immune Responses in Commercial Turkey

Background: Major histocompatibility complex (MHC) is one of the best characterized genetic regions controlling immune responses against vaccines. Identifying the association between MHC haplotypes and improved immune responses would be useful in genetic breeding strategies in animals. OBJECTIVES: MHC class II B genetic diversity and its association with humoral immune responses against Newcast...

متن کامل

O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis

Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...

متن کامل

Comparison of cattle BoLA-DRB3 typing by PCR-RFLP, direct sequencing, and high-resolution DNA melting curve analysis

Major histocompatibility complex (MHC) represents an important genetic marker for manipulation to improve the health and productivity of cattle. It is closely associated with numerous disease susceptibilities and immune responses. Bovine MHC, also called bovine leukocyte antigen (BoLA), is considered as a suitable marker for genetic diversity studies. In cattle, most of the polymorphisms are lo...

متن کامل

Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity.

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims peptides for MHC class I presentation, influencing the degree and specificity of CD8(+) T cell responses. Single-nucleotide polymorphisms within the exons encoding ERAP1 are associated with autoimmune diseases and cervical carcinoma, but it is not known whether they act independently or as disease-associated haplotypes. We sequenced ERAP1 fro...

متن کامل

Major Histocompatibility Complex: Disease Associations

Human major histocompatibility complex (MHC) alleles can be used as markers for a wide variety of autoimmune and other disorders. The interpretation of and possible bases for these associations can be considered in relation to conserved extended MHC haplotypes (CEHs). The latter are fixed stretches of up to several million base pairs of genomic deoxyribonucleic acid (DNA). CEHs constitute at le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Genetics

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006